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About Dark Labs 

 

Booz Allen Dark Labs is an elite team of security researchers, 

penetration testers, reverse engineers, network  

analysts, and data scientists, dedicated to stopping  

cyber attacks before they occur.1  

(1 http://darklabs.bah.com) 
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Motivation 

 Embedded in Society 

Critical Infrastructure 
(Nuclear Power Plant) 

Life Critical Systems 
(Pace Maker) 

Financial Infrastructure 
(Banking & Investing) 

Internet of Things (IoT) 
(IoT Gadgets) 

Commercial Products 
(Network Switch) 

Transportation Systems 
(Jeep) 



 

 

Motivation 

 Workhorses Behind the Embedded Scene 

Hexagon MSP 430 SuperH 

MIPS 
 

ARM PowerPC 



 

 

Motivation 

Why is embedded device security difficult? (vs. gen. purpose computing) 

 

 

 
 

1. Multi Architecture Support: 

 Plethora of architectures that are utilized in embedded devices versus 

ubiquitous adoption of x86  & x86_64 for general purpose  computing 

 This often requires security tool development for each architecture 

 

 

 

 



 

 

Motivation 

Why is embedded device security difficult? (vs. gen. purpose computing) 

 

 

 

 

2. Custom Hardware: 

 Embedded devices utilize custom and/or esoteric hardware (e.g. sensors) to 

perform specialized tasks 

 Difficult to emulate custom hardware, which is often required to achieve 

scale for dynamic analysis 

 

 

 



 

 

Motivation 

Why is embedded device security difficult? (vs. gen. purpose computing) 

 

 

 

 

3. Environmental Constraints: 

 Depending  on where the device is deployed, it may be constrained by mass, power, 

cost,  or volume that can also impact performance and memory 

 Mainstream features on general purpose devices such as ASLR or DEP may be  

sacrificed to satisfy environmental and/or computational constraints 

 

 

 



 

 

Motivation 

Why is embedded device security difficult? (vs. gen. purpose computing) 

 

 

 

 

 

4. Security as an Afterthought: 

 Often financially and/or technically infeasible to retrofit security capabilities to 

an embedded system that was not originally designed for it 

 Once deployed to target environment, embedded devices may be in operation 

for 10+ years. Because of (3), Moore's Law does not apply 

 

 

 



 

 

Objectives of Talk 

 Discussion of  an approach  for addressing the challenge of building 

analysis tools that can support multiple embedded architectures 

 

 Specifically, we’ll explore an approach for decoupling architecture 

specifics from the analysis by utilizing llvm, a widely supported 

intermediate representation (IR) language   

 

 



Background 

Firmware Analysis 



 

 

Background:  Firmware Analysis 

 Static Firmware Analysis:    

 Analysis of computer software that is performed without the actual execution 

of the software code  

 Data Flow analysis is a type of static analysis that can be used to understand 

and evaluate how “data flows” through the code paths of the program 

 Taint analysis  is a specific application of data flow analysis that follows user 

controlled data to identify code paths that process that data 

 



 

 

Background:  Firmware Analysis 

 Taint  Analysis 

 Can be very instrumental in identifying user-controlled vulnerable code 

 General Process 

 Step 1: Identify source data inputs that originate from user 

 Step 2: Follow the code paths that process (e.g. transformations and reads) the 

user data inputs 

 Step 3:  Keep track of code that reads the user data  

 A simple example to illustrate the concept of taint analysis can bee seen on 

the following slide 
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Taint Analysis Example  

15 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
int initializeArray(int * someArray, char * initiValues); 
 
int main(int argc, char *argv[]){  
    int myArray [10]; 
 
    if(argc !=  2) 
    { 
      printf("usage:Expected 2 arguments... Received:%d\n",argc); 
      return 1; 
    } 
    char * values = argv[1]; 
 
    initializeArray(myArray, values); 
    return 0; 
} 
 
int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 
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Step 1: Identify Originating User Controlled Input 

16 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
int initializeArray(int * someArray, char * initiValues); 
 
int main(int argc, char *argv[]){  
    int myArray [10]; 
 
    if(argc !=  2) 
    { 
      printf("usage:Expected 2 arguments... Received:%d\n",argc); 
      return 1; 
    } 
    char * values = argv[1]; 
 
    initializeArray(myArray, values); 
    return 0; 
} 
 
int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 

 

User controlled input 
(via command line) 
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Step 2: Follow Code that Processes Data  

17 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
int initializeArray(int * someArray, char * initiValues); 
 
int main(int argc, char *argv[]){  
    int myArray [10]; 
 
    if(argc !=  2) 
    { 
      printf("usage:Expected 2 arguments... Received:%d\n",argc); 
      return 1; 
    } 
    char * values = argv[1]; 
 
    initializeArray(myArray, values); 
    return 0; 
} 
 
int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 

 

‘values’ holds a 
reference to user 
controlled data 
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Step 2: Follow Code that Processes Data  

18 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
int initializeArray(int * someArray, char * initiValues); 
 
int main(int argc, char *argv[]){  
    int myArray [10]; 
 
    if(argc !=  2) 
    { 
      printf("usage:Expected 2 arguments... Received:%d\n",argc); 
      return 1; 
    } 
    char * values = argv[1]; 
 
    initializeArray(myArray, values); 
    return 0; 
} 
 
int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 

 

Call to  method that 
indirectly uses user 

controlled data  
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Step 2: Follow Code that Processes Data  

19 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
int initializeArray(int * someArray, char * initiValues); 
 
int main(int argc, char *argv[]){  
    int myArray [10]; 
 
    if(argc !=  2) 
    { 
      printf("usage:Expected 2 arguments... Received:%d\n",argc); 
      return 1; 
    } 
    char * values = argv[1]; 
 
    initializeArray(myArray, values); 
    return 0; 
} 
 
int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 

 

Alias of 
values, which 

is user 
controlled 
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Step 2: Follow Code that Processes Data  

20 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
int initializeArray(int * someArray, char * initiValues); 
 
int main(int argc, char *argv[]){  
    int myArray [10]; 
 
    if(argc !=  2) 
    { 
      printf("usage:Expected 2 arguments... Received:%d\n",argc); 
      return 1; 
    } 
    char * values = argv[1]; 
 
    initializeArray(myArray, values); 
    return 0; 
} 
 
int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 

 

‘strlen’ 
function reads 

value 
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Step 3: Identify read operations 

21 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
int initializeArray(int * someArray, char * initiValues); 
 
int main(int argc, char *argv[]){  
    int myArray [10]; 
 
    if(argc !=  2) 
    { 
      printf("usage:Expected 2 arguments... Received:%d\n",argc); 
      return 1; 
    } 
    char * values = argv[1]; 
 
    initializeArray(myArray, values); 
    return 0; 
} 
 
int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 

 

Read operation 
performed on user 

controlled data 



 

 

Background:  Firmware Analysis 

 Dynamic Firmware Analysis:    

 Execution of software in an instrumented or monitored manner to garner 

more concrete information on behavior 

 Typically, software is executed in an instrumented emulator (e.g. QEMU) as 

the emulator offers fine grained execution control 

 Emulators also provide the ability to parallelize the analysis without the need 

of additional physical devices 

 

 



 

 

Background:  Firmware Analysis 

 Complications of Dynamic Analysis in Embedded Systems 

 Dynamic analysis is most effective via an emulator, but emulation of 

embedded devices can be non-trivial 

 Embedded devices often use many variations of esoteric hardware that have 

little to no documentation, which makes emulating hardware problematic 

 The emulators may have limited support for the firmware’s processor 

architecture or the particular version of the processor 

 

 

 



 

 

Background:  Firmware Analysis 

 Approaches to address emulation problem (Not exhaustive) 

 Manual Static Analysis of Native Binary 

 Popular approach that  can require a significant amount of manual human analysis 

 Much manual effort spent  identifying & filtering out false-positives 

 Event Driven Dynamic Analysis Framework: (Avatar) [1] 

 Firmware code is executed inside an emulator.  

 Any I/O access is then intercepted and forwarded to the physical device 

 Firmware Adaption [2] 

 Extracting limited parts of firmware code to emulate it in a generic emulator 

 The focus is typically on user code that does not require significant I/O access or 

system calls 

 

 

 



 

 

Background:  Firmware Analysis 

 Static vs. Dynamic Analysis    

 Static analysis  scales well and can provide better code coverage 

 Dynamic analysis can uncover more “actual” vulnerabilities because only 

code paths that generate unexpected behavior during execution are analyzed 

 A potential code path marked as vulnerable during static analysis may not be 

reachable during actual execution 

 Static analysis requires that you know the type of vulnerability that you want 

to look for (e.g. buffer overflow and integer underflow) 
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Automated Exploit Generation 



 

 

Background: Automated Exploit Generation 

 Automated Exploit Generation (AEG)  

 Given a program, automatically find vulnerabilities and 

generate exploits for them. 

 One of the core objectives in DARPA’s Cyber Grand Challenge 



 

 

Background: Automated Exploit Generation 

 Steps for AEG [3] 

1. Bug-finding: Perform dynamic binary analysis to discover unsafe execution 

states 

2. Exploit Generation: For a specified unsafe execution state, generate a 

candidate exploit input (e.g. return-to-stack and return-to-libc) 

3. Verification: Feed in the exploit input into program to verify that control flow 

was altered in a desirable manner (e.g. spawn a shell) 

 

 



 

 

Background: Automated Exploit Generation 

 Commonly used bug-finding techniques for AEG 

 Fuzzing: Generate random permutations of a given input and monitor the 

program for crashes. 

 Symbolic Execution: Analysis of a program to determine the necessary 

inputs needed to reach a particular code path. Variables modeled as symbols 

 Concolic Execution: Used in conjunction with symbolic execution to generate 

concrete inputs (test cases) from symbolic variables to feed into program 

 Selective Symbolic Execution*:  Fuzzing +  Selective Concolic Execution 

 
* Approach used by the CGC teams that include Shellphish [4] 

 



 

 

Background: Automated Exploit Generation 

 Example: Symbolic Execution  

 

 

 

Example taken from  the following publication:  Symbolic Crosschecking of Data-Parallel Floating-Point Code (2014) 



 

 

Background: Automated Exploit Generation 

 Complications with AEG (not exhaustive) 

 Not all bugs are exploitable (e.g. may not be able to alter control flow in a 

desirable manner) 

 Not all exploits are reliable  (e.g. exploit requires an unlikely execution state) 

 Discovering the exploitable path among an infinite number of feasible paths 

is non-trivial 

 Requires dynamic analysis, which is also non-trivial for embedded systems 

 

 



Background 

Intermediate Representation (IR) Languages 



 

 

Background: IR Languages 

 Formal Definition: The language of an abstract machine designed to aid 

in the analysis of computer programs2 

 IR Languages (Not Exhaustive): 

1. Java Byte Code 

2. Microsoft’s Common Intermediate Language (shared by .NET Framework compilers) 

3. ESIL3 ( radare2 disassembler) 

4. BAP [5] (Binary Analysis Platform) 

5. REIL [6]  (Static Code Analysis) 

6. SWIFT4  

7. LLVM [7] ( Compiler Optimization) 

 
(2 https://en.wikipedia.org/wiki/Intermediate_representation) 

(3 https://radare.gitbooks.io/radare2book/content/esil.html) 

(4 https://github.com/apple/swift/blob/master/docs/SIL.rst) 

 



 

 

Background: IR Languages 

 IR Utilization in Disassemblers 

 An approach that  disassemblers (e.g. IDA Pro, Binary Ninja, and radare2)  utilize is to 

convert the binaries to IR for control flow and data flow analysis 

 For example, radare2 supports the following architectures4: 6502, 8051, CRIS, H8/300, 

LH5801, T8200, arc, arm, avr, bf, blackfin, xap, dalvik, dcpu16, gameboy, i386, i4004, i8080, m68k, 

malbolge, mips, msil, msp430, nios II, powerpc, rar, sh, snes, sparc, tms320 (c54x c55x c55+), V810, 

x86-64, zimg, risc-v. 

 Instead of creating an analysis tool for each architecture, radare2  performs analysis on its custom 

IR,  ESIL (Evaluable Strings Intermediate Language) 

 Example x86 to ESIL  Translation: 

 

 

 

 

 

 

(4 https://github.com/radare/radare2) 

 
 

 

 

mov eax, [0x80480]             0x80480,[],eax,=, #8  



LLVM 



 

 

LLVM 

 LLVM is a common infrastructure to implement a broad variety of 

compiled languages that include5  

 The family of languages supported by GCC (e.g. C, and C++) 

  Java 

 .NET 

 Python (via  Cpython) 

( 5 http://www.aosabook.org/en/llvm.html) 

 

LLVM 

(5) 



 

 

LLVM 

 Typical use case 

1. Translate programming language (e.g. C) to llvm IR (Front end) 

2. Perform compiler optimizations on llvm IR (Optimization) 

3. Translate llvm to target machine language, e.g. x86 (Back end) 

 

( 6 http://www.aosabook.org/en/llvm.html) 

 

 

 

LLVM 

(6) 



 

 

LLVM 

 Example “hello world” llvm IR7 

 

 

 

 

 

 

 

 

 

 

 

(7 http://llvm.org/docs/LangRef.html) 

 

 

 

subs R2, R2, #8   
 

 

v 

; Declare the string constant as a global constant. 
@.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00" 
 
; External declaration of the puts function 
declare i32 @puts(i8* nocapture) nounwind 
 
; Definition of main function 
define i32 @main() {   ; i32()* 
  ; Convert [13 x i8]* to i8  *... 
  %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0 
 
  ; Call puts function to write out the string to stdout. 
  call i32 @puts(i8* %cast210) 
  ret i32 0 
} 
 
; Named metadata 
!0 = !{i32 42, null, !"string"} 
!foo = !{!0} 



 

 

LLVM 

 Supported back end targets include 

 x86 & x86_64 

 ARM 

 MIPS 

 PowerPC 

 Hexagon 

 

 Back end code is typically maintained by the processor’s 

designers (e.g. Intel maintains the x86 & x86_64 llvm back end) 

 

 
 

 



 

 

LLVM 

 Analysis Libraries 

 One of the core functions of LLVM is to perform optimizations (e.g. eliminate dead 

code and redundant stores) on its IR to produce efficient code 

 It uses a powerful set of libraries written in C++ to analyze the code to identify 

optimizations 

 These libraries can also be used for static analysis to find potential vulnerabilities 

 Example:   We can perform loop analysis on any llvm instruction to determine the 

following 

 If the instruction is in a loop 

 What  are the exit conditions for the loop (e.g.  i<10) 

 Could be useful in identifying buffer overflows  

 
 

 



Architecture Independent Analysis and Exploitation 



 

 

Architecture Independent Analysis and Exploitation 

 So how can we utilize LLVM to analyze & exploit firmware? 

 Build a tool that can perform automated static analysis on the IR to find  potential bugs 

 In particular, we can exploit the fact that static analysis can provide us with more 

comprehensive code coverage 

 Bugs that  we may be interested in identifying include use-after-free, buffer overflow, 

and buffer underflow 

 

 

? llvm ir 



 

 

Architecture Independent Analysis and Exploitation 

 Static Analysis Example 

 Suppose we have a binary ‘simpleArray’ that has a potential buffer overflow 

vulnerability in one of its functions 

 The vulnerable code in its C representation can be seen on the next slide 

 

 

 

 

llvm ir 
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simpleArray.c 

44 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
int initializeArray(int * someArray, char * initiValues); 
 
int main(int argc, char *argv[]){  
    int myArray [10]; 
 
    if(argc !=  2) 
    { 
      printf("usage:Expected 2 arguments... Received:%d\n",argc); 
      return 1; 
    } 
    char * values = argv[1]; 
 
    initializeArray(myArray, values); 
    return 0; 
} 
 
int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 

 



 

 

Architecture Independent Analysis and Exploitation 

 Snippet of llvm ir (Static Analysis Example) 

 
 

 

v 

define i32 @initializeArray(i32* %someArray, i8* %initializingValues) #0 { 
  %1 = alloca i32*, align 8 
  %2 = alloca i8*, align 8 
  %length = alloca i32, align 4 
  %i = alloca i32, align 4 
  store i32* %someArray, i32** %1, align 8 
  store i8* %initializingValues, i8** %2, align 8 
  %3 = load i8** %2, align 8 
  %4 = call i64 @strlen(i8* %3) #3 
  %5 = trunc i64 %4 to i32 
  store i32 %5, i32* %length, align 4 
  store i32 0, i32* %i, align 4 
  br label %6 
 
 ……………………………… 
; <label>:31                                      ; preds = %6 
  ret i32 0 
} 



 

 

Architecture Independent Analysis and Exploitation 

 Static Analysis Example 

 Objective is to identify buffer overflows that occur on fixed size arrays 

 Next few slides will demonstrate how we can use our tool to accomplish this 

 

 

 

 

llvm ir 



Buffer Overflow Detection Example 



Buffer Overflow Detection Example 
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int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 

 

User  controls 
operand `length’  
of exit condition 

User Controlled operand 
of exit condition 



Buffer Overflow Detection Example 

Out of bounds write 
detected (myArray) 



 
 

 

v 

SimpleArray.c 

50 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
int initializeArray(int * someArray, char * initiValues); 
 
int main(int argc, char *argv[]){  
    int myArray [10]; 
 
    if(argc !=  2) 
    { 
      printf("usage:Expected 2 arguments... Received:%d\n",argc); 
      return 1; 
    } 
    char * values = argv[1]; 
 
    initializeArray(myArray, values); 
    return 0; 
} 
 
int initializeArray(int * someArray, char *initializingValues){ 
    int length = strlen(initializingValues); 
 
    for( int i =0; i <length; i++) { 
        someArray[i] = (int) initializingValues[i] ; 
        printf("someArray[%d] = %d\n",i, someArray[i]); 
    } 
  return 0; 
} 

 

Buffer overflow 
occurs if user 

passes in a string 
with length > 10 

Overflowed buffer 



 

 

Architecture Independent Analysis and Exploitation 

 Open Source Analysis Tool (Klee) 

 Klee is a popular analysis tool that takes as input llvm bitcode 

 Applied to all 90 programs in the GNU COREUTILS utility suite, which forms 

the core user-level environment installed on  most Unix  systems [9] 

 When program execution branches based  on  a  symbolic  value,  klee follows 

both branches at once, maintaining on each path a set of constraints called 

the path condition 

 When a path terminates or hits a bug, a test case can be generated by using 

the current path condition to find concrete  values that can generate the bug 

 

 

 

 



 

 
• Automated vulnerability analysis tools have the potential to allow the larger embedded 

community to conduct effective analysis, at scale, that has historically been limited to a 

small group of  security experts 

 

• However, there are some challenges (e.g. hardware emulation and multi-architecture 

support ) that will need  to addressed before the potential can be realized 

 

• In this talk, we’ve discussed an approach to address the multi-architecture support 

challenge by utilizing LLVM IR   

 

 

Conclusion 
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Questions? 

 Contact Information 
 Email: jones_malachi@bah.com 

 LinkedIn: https://www.linkedin.com/in/malachijonesphd 
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